Welcome to the Off-Shore Club

The #1 Social Engineering Project in the world since 2004 !

Important Notice:

✅UPGRADE YOUR ACCOUNT TODAY TO ACCESS ALL OFF-SHORE FORUMS✅

[New]Telegram Channel

In case our domain name changes, we advise you to subscribe to our new TG channel to always be aware of all events and updates -
https://t.me/rtmsechannel

OFF-SHORE Staff Announcement: 30% Bonus on ALL Wallet Deposit this week


For example, if you deposit $1000, your RTM Advertising Balance will be $1300 that can be used to purchase eligible products and service on forums or request withdrawal. The limit deposit to get the 30% bonus is $10,000 for a $3000 Marketplace wallet balance Bonus.

Deposit Now and claim 30% more balance ! - BTC/LTC/XMR


Always use a Mixer to keep Maximum anonimity ! - BTC to BTC or BTC to XMR

💣Exploit CVE-2024-50200 - Here is a title for the vulnerability: "MapleTree: Linux kernel spanning store tree corruption"

⚠️Always Remember to keep your identity safe by using a Zero-KYC Zero-AML like https://coinshift.money⚠️

Gold

Maksim

Tactician
Staff member
Administrator
Instructor
USDT(TRC-20)
$450.0
CVE ID : CVE-2024-50200
Published : Nov. 8, 2024, 6:15 a.m. | 1 hour, 2 minutes ago
Description : In the Linux kernel, the following vulnerability has been resolved: maple_tree: correct tree corruption on spanning store Patch series "maple_tree: correct tree corruption on spanning store", v3. There has been a nasty yet subtle maple tree corruption bug that appears to have been in existence since the inception of the algorithm. This bug seems far more likely to happen since commit f8d112a4e657 ("mm/mmap: avoid zeroing vma tree in mmap_region()"), which is the point at which reports started to be submitted concerning this bug. We were made definitely aware of the bug thanks to the kind efforts of Bert Karwatzki who helped enormously in my being able to track this down and identify the cause of it. The bug arises when an attempt is made to perform a spanning store across two leaf nodes, where the right leaf node is the rightmost child of the shared parent, AND the store completely consumes the right-mode node. This results in mas_wr_spanning_store() mitakenly duplicating the new and existing entries at the maximum pivot within the range, and thus maple tree corruption. The fix patch corrects this by detecting this scenario and disallowing the mistaken duplicate copy. The fix patch commit message goes into great detail as to how this occurs. This series also includes a test which reliably reproduces the issue, and asserts that the fix works correctly. Bert has kindly tested the fix and confirmed it resolved his issues. Also Mikhail Gavrilov kindly reported what appears to be precisely the same bug, which this fix should also resolve. This patch (of 2): There has been a subtle bug present in the maple tree implementation from its inception. This arises from how stores are performed - when a store occurs, it will overwrite overlapping ranges and adjust the tree as necessary to accommodate this. A range may always ultimately span two leaf nodes. In this instance we walk the two leaf nodes, determine which elements are not overwritten to the left and to the right of the start and end of the ranges respectively and then rebalance the tree to contain these entries and the newly inserted one. This kind of store is dubbed a 'spanning store' and is implemented by mas_wr_spanning_store(). In order to reach this stage, mas_store_gfp() invokes mas_wr_preallocate(), mas_wr_store_type() and mas_wr_walk() in turn to walk the tree and update the object (mas) to traverse to the location where the write should be performed, determining its store type. When a spanning store is required, this function returns false stopping at the parent node which contains the target range, and mas_wr_store_type() marks the mas->store_type as wr_spanning_store to denote this fact. When we go to perform the store in mas_wr_spanning_store(), we first determine the elements AFTER the END of the range we wish to store (that is, to the right of the entry to be inserted) - we do this by walking to the NEXT pivot in the tree (i.e. r_mas.last + 1), starting at the node we have just determined contains the range over which we intend to write. We then turn our attention to the entries to the left of the entry we are inserting, whose state is represented by l_mas, and copy these into a 'big node', which is a special node which contains enough slots to contain two leaf node's worth of data. We then copy the entry we wish to store immediately after this - the copy and the insertion of the new entry is performed by mas_store_b_node(). After this we copy the elements to the right of the end of the range which we are inserting, if we have not exceeded the length of the node (i.e. r_mas.offset \ pivot = 0xffff / \ pivot = ULONG_MAX / ---truncated---
Severity: 0.0 | NA
Visit the link for more details, such as CVSS details, affected products, timeline, and more...
Full story here:
 

Create an account or login to comment

You must be a member in order to leave a comment

Create account

Create an account on our community. It's easy!

Log in

Already have an account? Log in here.

Friendly Disclaimer We do not host or store any files on our website except thread messages, most likely your DMCA content is being hosted on a third-party website and you need to contact them. Representatives of this site ("service") are not responsible for any content created by users and for accounts. The materials presented express only the opinions of their authors.
🚨 Do not get Ripped Off ! ⚖️ Deal with approved sellers or use RTM Escrow on Telegram
Gold
Mitalk.lat official Off Shore Club Chat


Gold

Panel Title #1

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Panel Title #2

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Top